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EXPONENTIAL GROWTH FOR A FRACTIONAL
DIFFERENTIAL EQUATION
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ABSTRACT. This paper concerns the exponential growth of solutions
for a fractional differential equation with a fractional damping of order
between 0 and 1 in the presence of a source of polynomial type.
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1. INTRODUCTION

The aim in this paper is to extend a previous work by Tatar [16] where an
exponential growth for solutions of a wave equation with fractional damping
has been established. This result is obtained by introducing a new functional
and using an argument due to Georgiev and Todorova [1] together with some
appropriate estimations.

We are interested by the following integro-differential problem
(1) Uy + 8,51+‘”u — Au — yAur = |u|p’1u, zeN, t>0
with boundary conditions
(2) u(z,t) =0, z€edN, t>0
and initial data
(3) u(z,0) = up(x), w(x,0)=wu(z), x €N

where Q is a bounded domain of ¥ (N > 1) with a smooth boundary 9.
The functions ug(x) and u;(x) are given. The constants p, « and ~ are such
that p > 1,—1 < a < 1 and v > 0. The notation 8t1+a denotes the fractional
derivative of order 1 + « in the Caputo sens (see[12]) defined by

d
(4) o T (t) = I_O‘Ew(t) for —1l<a<l1
and
2
(5) oFow(t) = Il_a%w(t) for 0 < v < 1,

where I, 3 > 0 is the fractional integral
1

6 IPw(t) = —

(6) wit) = =

t —sﬁ*lws S.
(5)/0@ Yo lw(s)d

For more on fractional integrals and derivatives see also [4, 11, 12, 13].
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The problem (1)-(3) was first studied for o = 3 and v = 0 by Lokshin [8]
and Lokshin and Rok in [9]. Then it has been discuted by Matignon et al.
[10] (see also [6] for the existence result).

The equation (1) where v = 0 and o = —1 has been extensively studied
by many authors (see [2, 3, 5, 13, 15]). The authors proved the blow-up of
solutions in finite time for sufficiently large initial data.

This paper is a continuation of earlier works discussed by M. Kirane and
N.-E. Tatar [7] and N.-E. Tatar [16].

Our paper is organized as follows: In the next section we present some
definitions and materials needed in our proofs. Section 3 is devoted to the
statement of some results and proof of the exponential growth of solutions.

2. PRELIMINARIES
Let us define the classical functional energy associated to the problem
(1)-(3) by
1 1
7 BO = [ {3l + 5190 - —lap*! fda.
o l?2 p+1

We multiply (1) by u¢ and integrate over 2, we obtain

(8) dﬁ;i /ut/ (t — s)~ @y, (s)dsda — /|Vut| dz.

Observe that dE(t)

is not gauaranteed

is of an undefined sign and the decreasing of the energy

Now, we define the modified functional energy by

() E..(t) = E(t) e/ {utu + %|Vu|2}da:,

Q

for some 0 < ¢ < 1 and v > 0. If we multiply (1) by (u; — cu) and integrate
over ) we get

d 1 2 1 2 1
- - —(1 — ey)|V S POV -5 d
dt /“{2|ut| +2( 6/)| u| p+1|u| €Utu} x

1 t
—/ut/ (tfs)_(aﬂ)ut(s)dsdxffy/ |Vut|2d:€fe/ g |2 da
Q Q
/ / —(at1) ut(s)dsdx+e/ |Vu|2fe/ |ulPTtd.
—) Q

Ublllg definition (9) we can write

dEﬁ»W( _ —(a+1) / 2
pr —fr(_a)/ﬂut/o (t—s) ut(s)dsdx — Q|Vut| dx
t
—e/ |ut|2dm+;/ u/ (t — s)~ @y (s)dsda
Q L(—a) Jo Jo
(10) +e/ |Vu|? fe/ |ulP L da.
Q Q
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Next, for ¢t > 0 we introduce the auxiliary functional

(11) H(t) = e "B (t) + pF (t)
where
t
(12) F(t) :/ /G(t— s)e 7 uldrds
0 Jo
with
+00
(13) G(t) = eﬁt/ e Psg—latl) g,
t

Here, p > 0, 8 > 0 and o > 0 are three positive constants that will be
precised below.

3. EXPONENTIAL GROWTH OF THE SOLUTION

Theorem 3.1. Let u(z,t) be a regular solution of (1)-(2) with —1 < o < 0
and p > 1. Suppose that the initial data E.(0) < 0, then u(x,t) grows up
exponentially in the LPT-norm.

Proof. If we apply the following formula

b(t)
i /a(t) olt,2)dz = ()6 (t. (1)) - ' ()o(t,a(t)) + / "9 iz,

a(t) dt

then the differentiation of F'(t) with respect to ¢ yields

/G —0’€t|u |2d1—// —(2a+3) —0’69|u |2d1}d5’
+
(14) +/3/ /eﬂ(t_s)/ e‘ﬁzz_@‘“?’)e_"“|ut|2dxds.
0 JQ t—s

Since
+00
G(0) = / e=Ps5=(2a+3) g — g2t (24 4 4),
0

the relation (14) gives

dF(t
d( ) 252(044—1) (2(_Y+4 aet/ |ut|2dx
(15) / ﬂ —(2a+3) _U€S|u,«|2d$d8+ﬁF( )
<

Now, to calculate df@, we differentiate (11) with respect to t. So

dH (t)

(16) 7

= —oce "B (t) + e TE]_(t) + pF' ().
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Taking into account the definitions (9), (10) and (14), the relation (16)

becomes
dH(t
dt( ) _ (% +e— ’uﬁ2(zy+1)]_"(2a+4))eocl,/ |ut|2dx
Q
2
_ (f A e> ef””"/ |Vu|*dx —l—aeQe*‘m/ upude
2 2 Q
( p—:1> —Uet/ |u|p+1d$ ’YG_Jet/ |VUt| dx
*N/ / .9)_(2(¥+3)€_G€S|ut|2dxd8
—Ucf
+ / / —(@t Dy, (s)dsda
—aet
(17) - Ta)/gut/o (t — )~ TV (s)dsdx + pF(t).
The Young inequality and the Poincare inequality give
1
(18) /utudx < 4—/ |Ut|2d$+60p/ |Vu|?da
Q €Jo Q

where Cj, is the Poincare constant. In the first time we can write

t
e‘“t/ut/ (t — s)~ @ Dy, (s)dsda
Q

act ge ge€s
/ut/ —let ) o= (=9) =5 1y (s)dsda.
Q

Then, the Young inequality yields
“t/ut/ (t—s)” (a+1) ut( Ydsdx

< — 7<ret/ |Ut| dr
1 ! —(at1),— 2 (t—s) oL
+m o o (t*S) e 2 e 2 Ut( )de dCC

Using the Holder inequality with the decomposition o +1 = —3 Ly (a+ )
we obtain

t 2 t
(/ (t _ S)(a+1)e%(ts)607csut(s)ds> < ( 1)2 / (t _ 8)7(204—&-3)67053|ut|2d87
0 g€ 0

finally, we arrive at

706t/ut/ —(a+1) (S)deIL‘
< 4€_U€t/ R

(19) o) 0253// ~(2atd)gmoes)y, 2 dsda.
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Similarly, we have

_aet/ / —(a+1) ut(s)dsdac
Q

< JCpe_‘”t/ |Vu|*dx

(20) 450 Lol / / ~@at3)g=oes)y, 2dsda. (5 > 0).

By substitution of (18)-(20) in (17), we get

dH(t)S— E+€_M/B2(a+l) (20_‘_4)____] —Uet/|u| dx
dt | 2
e[; <1+g+ O+ ¢ OC” )] “’“/IVUleﬂC
B '#_ 1 // —(a+8)g=oes |y, |2 dsd
] 40262T (—a) ef( a) Q
(21)

Y —— e‘“t/ |u[PTtda — 76‘"“/ |V ?de 4+ pBF(t).
p+1 Q 0

Adding and subtracting ceH(t) in the right hand side of (21) after applica-
tion (18) to the term [, uwyudz, we obtain:

dH(t 1
—dt( ) < oeH(t) - 3 [ae + e — 2B (20 + 4)} e_aet/ e dee
Q
—elo— (L4 oey+2062Cp + o eiad/ Vul?dz
P T (~a)
B B 1 —(2a+3) e~ T€s 2
[M 4026’ (—a) <6 >} / /ﬂ uldads

(22)

2
- e(l i >e“’“/ |ulPT da — ve_“t/ |V |2da + (B — oe)F(t).
p+1 0 Q

(p—1I'(-a))
ic,

To simplify the calculations we choose § = . Then inequality (22)

reduces to

H(t 1
ddt()< H()—i{aeJre—Q,uﬁ (a+Dp (2a+4} ‘m/|ut|2d1’

e[a (UE’Y+2U’62C +p+3)} 7””/ |Vu|>da
1 1 260 —(2a+3) e T€s
[/t 3022 (—a) ( >] / / |ut|2dads

2
- e(l i >e”‘t/ |u[Pda — 'ye’”‘t/ |V |2 d + (8 — o€)F(t).
p+1 ) o

(23)
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Now, note that the coefficient of [, |Vu|*da in (23) is negative.
Next, if we choose (with simple conditions)

¢ < min {1 1 v+ +8C, —vp+ 1)+ + 12 +4G,(p” - 1)}

Y+ Gy’ 4C) ’ 4Cp(p+ 1)
then, it is possible to select o such that
p+3 p+1
<o < ———,
A1 —ye—22C,) 75 2

which guarantees the negativity of the coefficients of [, |Vu|*dz and [, |u[Pdz.

We assume that p is large enough, as

S 1 1 n 2¢C
b= 202622 (—a)\e p—1

2( : )

a+1

8<mindoe |—S 7
2ul (20 + 4)

the other coefficients in (23) are all negative. This allows us to write (23) as

and

(24) WO <oerir)y (2 0)
From the hypothesis of the theorem 3.1 we have
H(0) = Ec4(0)
_ / {lu% + 20 2 )| uf? = e jutt - euoul}dx <0.
o2 2 p+1

Using the differential form of the Gronwall inequality we obtain directly
from (24) that

(25) H(t) < H(0)e% (t>0).
On the other hand, from the definition of H(t) we can write
e—oct
Ht) > / P e+ S / gl 2d + (1— —m/ Vuldz
S ptl

—ee“’et/ upudx.
Q

Applying (18) (with e = &) we get for t > 0,

—oet
H(t) > / |ufP+ldz
p+1Jg

efaet

+ / [(1 — O)|uw)? + (1 — ey — €Cp)|Vu|? | dz
0

By our choice of €, we have 1 —¢ > 0 and 1 — ey — eC)p, > 0, then it is clear
that

—oet
2 p+1
(26) - p+1/ ™ de.
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Inequalities (25) and (26) lead to

—oe€t
H(0)o > - / P+ dz,
p+1Jg

which implies that
/ |u[PT e > —H(0)(p + 1)e*7 (t>0).
Q
The proof is now complete. d
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